商业智能分析的方法论(商业智能的步骤)

数据分析和商业智能的区别

1、所以数据分析包含的内容可以很宽泛,而商业智能则更聚焦于实现商业价值。数据分析的概念:通俗意义上来讲,“数据分析”并没有特定的应用场景,人们更喜欢将数据分析作为一种行为过程去讨论,或在其后加上诸如方法论这类的具体名词来定义。

2、数据分析只是一种利用数学方法处理数据的工具,讲究的是对数据的统计分析、探索假设以及验证的过程。数据分析只是商业智能运用里的一部分。在使用方面,FineBI一类的商务智能系统应用性和使用感都要更强。

3、传统报表:向上级报告情况的表格。简单的说:报表就是用表格、图表等格式来动态显示数据。商业智能:BI(Business Intelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。

4、商业智能(BI)系统是直接连接到业务系统的,可以对MIS的数据进行抽取、转换和加载(ETL),生成多维数据模型,然后用户可以直接对这个多维数据模型进行包括钻取、切块等分析操作。以我们正在用的Wyn Enterprise为例,整个过程全是图形界面的,拖拖拽拽即可完成这些数据处理。

请问你是数据挖掘的研究生?数据挖掘研究生阶段都学什么?

因为与数据库密切相关,又称为数据库知识发现(Knowledge Discovery in Databases,KDD) ,就是将高级智能计算技术应用于大量数据中,让计算机在有人或无人指导的情况下从海量数据中发现潜在的,有用的模式(也叫知识)。 广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI(商业智能)。

如下:编程语言 目前工业界的机器学习编程语言很多,基于个人的一些浅显的工作经验,发现目前比较常用的编程语言是 Python 和 SQL。需要掌握的内容有以下几点:聚合函数,数学函数,字符串函数,表格的连接函数,条件语句等。机器学习 推荐教材《机器学习实战》,作者是 Peter Harrington。

建议就是你得了解数据挖掘都涉及到哪些学科:首先是概率论与数理统计,还有矩阵论,两门最基础的数学,这是研究算法的工具。其次,会编程,掌握java或者c++平台下开发的数据挖掘工具,能够学习算法源代码进而更深入地研究,还有数据库方面的知识。

首先,数据挖掘的技术有好多种,你要定位到某类数据挖掘算法,比如分类,聚类,关联规则,预测等等。再次,就是根据你的定位,大量阅读国内外(特别是国外)研究人员对这类算法的改进及应用,要熟悉。然后呢,就是提出你对该算法的改进方法,并实现。说白了,就是算法的改进,实现。