包含机器学习题目的词条

机器学习之——多类分类问题

1、机器学习之——多类分类问题 在之前,我们讨论了逻辑回归模型(Logistic Regression)解决分类问题。但是我们发现,逻辑回归模型解决的是二分问题,即:模型的结果只有两个值,y=0 or y=1 。但是在现实情境下,我们的训练集往往包含多个类(2),我们就无法用一个二元变量(y=0|y=1)来做判断依据了。

2、maxsoft作为logistics二分类的改进版,天生适合多分类;神经网络(如bp神经网络,随机权神经网络,RBF神经网络等);通过建立多个支持向量机或者最小二乘支持向量机分类模型,通过投票算法选择概率最大的分类标签;也可以通过聚类算法(KNN,kMeans等)等无监督学习算法实现分类。

3、多项式拟合是一种通过构建多项式函数来拟合数据的方法。它可以在输入特征的多个维度上进行拟合,以捕捉数据中的非线性关系。在机器学习中,多项式拟合常用于回归和分类问题。向量机回归 向量机回归(VSR)是一种用于回归问题的机器学习算法。

4、多类分类是机器学习领域中的重要问题,它的应用在现实生活中非常普遍,多类分类问题是对两类分类问题的推广。

5、“一对多”,OvR: 产生N个分类器,在预测时,若只有一个分类器预测为正类,则对应的类别标记为最终分类结果。若有多个分类器预测为正例,则通常考虑各个分类器的预测置信度,选择置信度最大的类别标记作为分类结果。

机器学习问题:一个训练样本一定要是一幅图像吗?可以是一个像素吗?一...

机器学习中训练样本不均衡问题 在实际中,训练模型用的数据并不是均衡的,在一个多分类问题中,每一类的训练样本并不是一样的,反而是差距很大。比如一类10000,一类500,一类2000等。解决这个问题的做法主要有以下几种:欠采样:就是把多余的样本去掉,保持这几类样本接近,在进行学习。

“过拟合”是指学习器对训练样本学的太好了,导致泛化程度不够(还记得机器学习就是一个泛化过程吗),没法适应新的数据样本。与之相反的还有一个“欠拟合”的概念,就是对训练样本中的一般规律都没学习好。

若视每个像素为一个变量,直接将每幅图像作为一个样本,以图像内容或某主题的分类/聚类为目标,则对一般图像而言,任意单个像素代表的变量都没有对应的确定且可解释的意义,通常也不是必要的。对一般机器学习建模方法来说,像素数据不具备一般变量的性质。

常用机器学习解决的问题包括()。

目前,机器学习已经成功应用于以下领域:金融领域:检测信用卡欺诈、证券市场分析等。互联网领域:自然语言处理、语音识别、语言翻译、搜索引擎、广告推广、邮件的反垃圾过滤系统等。医学领域:医学诊断等。自动化及机器人领域:无人驾驶、图像处理、信号处理等。

线性回归在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。 Logistic 回归Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。 线性判别分析Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。

机器学习中常用的方法有:(1) 归纳学习符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。(2) 演绎学习(3) 类比学习:典型的类比学习有案例(范例)学习。

线性回归 一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。

机器学习如果可以进入一个问题中, 往往要具备三个条件:1, 系统中可能存在模式2, 这种模式不是一般解析手段可以猜测到的。3, 数据可以获取。如果三点有一点不符,都很难运用机器学习。机器学习的一个核心任务即模式识别, 也可以看出它和刚才讲的复杂系统提到的模式的关系。

浅谈组合优化问题求解中的机器学习方法

1、调整投资组合:使用机器学习模型来指导投资组合决策。可以定期监视投资组合,并尝试将其与市场的变化保持同步,以获得最大的回报。监视和更新:对机器学习模型进行监视,以确保其在市场变化时仍能够准确地预测证券价格和构建优化的投资组合。同时,需要对数据进行更新,以保持模型的精度和有效性。

2、模型选择与训练:根据问题的性质选择合适的机器学习模型。例如,可以使用回归模型来预测股票价格,使用分类模型来判断买卖时机,或者使用强化学习来直接生成交易策略。模型需要在历史数据上进行训练,通过优化算法调整模型参数以最小化预测误差或最大化预期收益。

3、模型选择:使用机器学习算法,如回归分析、神经网络、支持向量机等,选择最合适的模型来预测股票价格变动。模型训练:利用历史数据来训练模型,根据模型输出预测结果。组合优化:根据预测结果,结合股票风险偏好和其他限制条件,利用组合优化算法来构建最优化投资组合。

4、编写交易策略:使用Backtrader编写交易策略。Backtrader支持多种类型的数据源,包括CSV文件和实时数据流。您可以使用Backtrader内置的指标和信号,也可以自定义指标和信号。回测交易策略:使用历史数据回测您的交易策略。Backtrader支持多种回测方式,包括标准回测和Walk Forward分析。

5、模型选择和训练:根据投资组合和风险管理的需求,选择合适的机器学习算法,如回归、分类、聚类等,利用历史数据对模型进行训练。模型评估和优化:评估模型的表现,比较不同算法和参数组合的效果,进行优化,以提高预测准确度和投资回报率。