Copyright © 2023-2024 Corporation. All rights reserved. 深圳乐鱼体育有限公司 版权所有
春漫画学Python 作者把Python语言的概念尽量以漫画的形式来展现。 虽然不是以通篇漫画,而是文字穿插漫画的形式, 但内容网罗了所有的基础概念以及进阶知识。 Python源码部折 书中不仅包括了对Python内置源码的剖析,更将大量 的篇幅用于对Python虚拟机及Python高级特性进行展 开解读。
推荐理由:编程入门的必备书,从一个个的小例子入手,不仅是教你写Python代码,还有编程的技巧。《Python编程快速上手》本书的首部分介绍了基本Python编程概念,第二部分介绍了一些不同的任务,通过编写Python程序,可以让计算机自动完成它们。
《父与子的编程之旅》。了解了计算机的基本运行原理和编程的基本概念。2 《Python简明教程》。这是一本言简意赅的 Python 入门教程,简单直白,没有废话。就算没有基础,你也可以像读小说一样,花几天时间就可以读完,适合快速了解语法。3 廖雪峰编写的《Python教程》。
1、《机器学习》(周志华):这本书系统地介绍了机器学习的基本概念、方法和应用,是一本很好的入门教材。《模式识别与机器学习》(Christopher M. Bishop):这本书详细介绍了模式识别和机器学习的基本理论和方法,适合有一定数学基础的读者。
2、深度学习 - 由Ian Goodfellow等人编撰对于学生和软件工程师,这本书是深度学习的黄金入门指南,无论你是初学者还是寻求进阶,都能在理论与实践的交织中找到自己的舞台。
3、无论是初学者还是有一定基础的读者,都能从中受益匪浅。另一本值得推荐的书籍是《人工智能:一种现代的方法》,该书由斯坦福大学教授Stuart Russell和Peter Norvig合著,是人工智能领域的经典之作。
4、《深度学习》(Deep Learning)作者:Ian Goodfellow, Yoshua Bengio 和 Aaron Courville 深度学习是人工智能的一个重要分支,这本书提供了深入的理论基础和丰富的实践案例。它详细介绍了神经网络的工作原理、训练技巧以及在图像识别、语音处理等领域的应用。
1、《人工智能:一种现代的方法》(Artificial Intelligence: A Modern Approach)作者:Stuart Russell 和 Peter Norvig 这本书被广泛认为是人工智能领域的经典教材,适合初学者和有一定基础的学生。它全面介绍了人工智能的基本概念、算法和技术,包括搜索算法、知识表示、推理、机器学习、自然语言处理等。
2、《人工不智能》这本书会告诉你,高估了人工智能会带来什么社会问题,以及自动驾驶这件事有多难,它还会告诉你,现阶段人工智能的社会化应用的根本矛盾是什么。人们不应该假设计算机能够永远正确,如果人们能够认识到技术使用的局限性,可以让技术更好地造福人类。
3、深度学习 - 由Ian Goodfellow等人编撰对于学生和软件工程师,这本书是深度学习的黄金入门指南,无论你是初学者还是寻求进阶,都能在理论与实践的交织中找到自己的舞台。
4、《线性代数及其应用》(David C. Lay):线性代数是人工智能领域的基础数学工具,这本书讲解清晰,适合初学者。《概率论与数理统计》(陈希孺):概率论与数理统计是研究随机现象的数学分支,对于理解机器学习算法的原理至关重要。
5、《深度学习》和《人工智能:一种现代的方法》这两本书籍作为人工智能领域的入门和进阶读物。对于希望深入了解人工智能的读者,我会首先推荐《深度学习》这本书。该书由全球人工智能领域的知名学者Ian Goodfellow、Yoshua Bengio和Aaron Courville共同撰写,是深度学习领域最具权威性的著作之一。
6、《深度学习》深度学习领御奠基性的经典畅销书,长期位居亚马逊AI和机器学习类图书榜首。《人工智能》智能革命时代先行者李开复解读AI如何重塑个人、商业与社会的未来图谱。《人工智能简史》全方位解读人工智能的起源、神经网络、遗传算法、深度学习、自然语言处理等知识,深度点评AI历史趋势。
1、《人工智能通识》在介绍人工智能的基本原理时,尽量回避了相关的复杂模型和算法设计,方便读者在社会层面理解人工智能的应用形式和未来的发展路径。此外,书中每章都设计了一些思考与练习的题目,以便读者在课堂练习和研讨中使用。
2、学习 Python 的网课和书籍有以下几个:网课推荐:《Python 核心基础》:这门课适合 Python 新手从入门开始学习,涵盖了 Python 的基础语法,类型,对象,函数,面向对象等内容,每节课都有配套的练习题和案例。《Python 入门课程》:这门课由知乎的夜曲编程老师主讲,适用于不具备 Python 基础知识的人。
3、无论你是刚接触编程或者刚接触Python,通过学习《Python学习手册(第3版)》你可以迅速高效地精通核心Python语言基础。
4、机器学习 首先推荐的一本书的周志华的《机器学习》,网称西瓜书,这是机器学习领域的经典入门教材之一,是一本大而全的书!内容中有用到西瓜举例子。如果你之前真的没有接触过任何关于机器学习的知识,那么这本书大概可以作为你第一本入门书。
5、《计算机从入门到精通》非常值得零基础的人群看,可以让我们从一个小白变成一个懂一点点的人,《office从入门到精通》这本书可以让我们更加熟练的使用办公软件。
很多人选择 python 作为工具是因为 python 语法简单,功能强大,而且像 scikit-learn 这样的机器学习类库众多。这本书详细地讲解了 scikit-learn,并引导我们应用它来做数据分析。这本书的作者推崇在编写算法的同时进行可视化。因此,你不仅能学到如何编写算法,还能学会对数据进行可视化。
《概率论与数理统计》(陈希孺):概率论与数理统计是研究随机现象的数学分支,对于理解机器学习算法的原理至关重要。《Python编程:从入门到实践》(Eric Matthes):Python是人工智能领域最常用的编程语言,这本书适合初学者学习Python编程。
本书通过AI“小白”小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python 基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。
这本书被广泛认为是人工智能领域的经典教材,适合初学者和有一定基础的学生。它全面介绍了人工智能的基本概念、算法和技术,包括搜索算法、知识表示、推理、机器学习、自然语言处理等。
《模式识别与机器学习》(Christopher M. Bishop):这本书详细介绍了模式识别和机器学习的基本理论和方法,适合有一定数学基础的读者。《自然语言处理综论》(Jurafsky & Martin):自然语言处理是人工智能领域的一个重要分支,这本书全面介绍了自然语言处理的基本概念和技术。
《Python 机器学习基础》 书中重点讨论机器学习算法的实践而不是背后的数学全面涵盖在实践中基础教程实现机器学习算法的所有重要内容,帮助读者使用Pvthon和scikit-learn 库步一步构建一个有效的机器学习应用。 《Python编程:从入门到实践》 本书是一本针对所有层次的python读者而作的Pvthon入门书。
《Python机器学习——预测分析核心算法》从算法和Python语言实现的角度,认识机器学习。《机器学习实践应用》阿里机器学习专家力作,实战经验分享,基于阿里云机器学习平台,针对7个具体的业务场景,搭建了完整的解决方案。