Copyright © 2023-2024 Corporation. All rights reserved. 深圳乐鱼体育有限公司 版权所有
1、决策树模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数最小化原则建立决策树模型;预测时,对新的数据,利用决策树模型进行分类 。决策树学习本质:决策树学习是从训练数据集中归纳一组分类规则、与训练数据集不相矛盾的决策树可能有多个,也可能一个没有。
2、决策树简介 决策树作为非参数监督学习的瑰宝,以其直观易懂的结构在分类和回归任务中大放异彩。决策树由节点和边构成,每个内部节点象征特征,叶节点则代表最终的决策类别。信息增益,通过衡量不确定性减少的程度,成为特征选择的关键指标。让我们以贷款申请为例,深入理解这一过程。
3、树:由节点和边两种元素组成。 父节点、子节点是相对的,子节点由父节点根据某一规则分裂而来。 根节点:没有父节点的节点,初始分裂节点。 叶子节点:没有子节点的节点。决策树: 利用树形结构进行决策,每一个非叶子节点是一个判断条件,每一个叶子节点是结论。
1、决策树(Decision Tree)常用于研究类别归属和预测关系的模型,比如是否抽烟、是否喝酒、年龄、体重等4项个人特征可能会影响到‘是否患癌症’,上述4项个人特征称作‘特征’,也即自变量(影响因素X),‘是否患癌症’称为‘标签’,也即因变量(被影响项Y)。
2、效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。便于通过静态测试来对模型进行评测,可以测定模型可信度;如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。
3、决策树学习通常包括三个步骤: 特征选择 、 决策树的生成 和 决策树的修剪 。 分类决策树模型是一种描述对实例进行分类的树形结构,决策树由节点(node)和有向边(directed edge)组成。节点有两种类型:内部节点(internal node)和叶节点(leaf node)。内部节点表示一个特征或属性,叶节点表示一个类。
4、决策树模型的可解释性更强。决策树:优点:计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征。缺点:容易过拟合(后续出现了随机森林,减小了过拟合现象)。逻辑回归:优点:实现简单,分类时计算量非常小,速度很快,存储资源低。
既然决策树就是一种特征选择的方法,那么经典决策树算法其实就是使用了不同的特征选择方案。 如: (1)ID3:使用信息增益作为特征选择 (2)C5:使用信息增益率作为特征选择 (3)CART:使用GINI系数作为特征选择 具体选择的方法网上一大把,在这里我提供几个链接,不细讲。
剪枝(pruning)则是决策树算法对付过拟合的主要手段,剪枝的策略有两种如下:定义:预剪枝就是在构造决策树的过程中,先对每个结点在划分前进行估计,如果当前结点的划分不能带来决策树模型泛化性能的提升,则不对当前结点进行划分并且将当前结点标记为叶结点。
决策树学习的目的就是为了产生一棵泛化能力强,即能处理未见示例能力强的决策树。这些就是决策树算法的结构。决策树的原理 一般来说,决策树归纳的基本算法是贪心算法,自顶向下以递归方式构造决策树。而贪心算法在每一步选择中都采取在当前状态下最优的选择。