Copyright © 2023-2024 Corporation. All rights reserved. 深圳乐鱼体育有限公司 版权所有
因为PRML是一本兼顾广度、深度、可读性、可用性(做习题)的好书。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
总结来说,PRML以其博大的知识覆盖面、严谨的深度解析、易读的表达以及丰富的实践价值,成为了机器学习领域中一本集广度、深度、可读性和实用性的杰作,是每个机器学习爱好者不可或缺的里程碑式读物。
但是(1)在PRML书中,以及李航《统计学习》中并没有把其当作一个贝叶斯网络来进行处理,对所有的参数比如发射概率,转移矩阵概率都是模型的参数,而不是通过赋予一个先验分布,从而纳入到贝叶斯网络框架之中。
现在北京大学的张志华教授曾经在2017年的《中国计算机学会通讯》上发表了《机器学习的发展历程及启示》[1],这篇文章里就很详细地推荐了机器学习的学习方式——机器学习集技术、科学与艺术于一体,它有别于传统人工智能,是现代人工智能的核心。它牵涉到统计、优化、矩阵分析、理论计算机、编程、分布式计算等。
传统的机器学习有如下特点,知识系统化,有相对经典的书。其中统计学习(代表SVM)与集成学习(代表adaboost)是在实践中使用非常多的技术。下面是相关资源: 推荐,机器学习(周志华):如果是在以前,机器学习方面的经典教材首推PRML,但现在周老师的书出来以后,就不再是这样了。首先推荐读周老师的书。
《R in Action-Data Analysis and Graphics with R》R是属于GNU系统的一个自由、免费、源代码开放的软件,用于统计计算和统计制图。这本书从实用的统计研究角度逐例分析R在数据处理、模型构建、以及图形操作上的由浅入深的结合,堪称经典。
《机器学习》(周志华):这本书系统地介绍了机器学习的基本概念、方法和应用,是一本很好的入门教材。《模式识别与机器学习》(Christopher M. Bishop):这本书详细介绍了模式识别和机器学习的基本理论和方法,适合有一定数学基础的读者。
《人工智能:一种现代的方法》(Artificial Intelligence: A Modern Approach)作者:Stuart Russell 和 Peter Norvig 这本书被广泛认为是人工智能领域的经典教材,适合初学者和有一定基础的学生。它全面介绍了人工智能的基本概念、算法和技术,包括搜索算法、知识表示、推理、机器学习、自然语言处理等。
《深度学习》和《人工智能:一种现代的方法》这两本书籍作为人工智能领域的入门和进阶读物。对于希望深入了解人工智能的读者,我会首先推荐《深度学习》这本书。该书由全球人工智能领域的知名学者Ian Goodfellow、Yoshua Bengio和Aaron Courville共同撰写,是深度学习领域最具权威性的著作之一。
《深度学习》深度学习领御奠基性的经典畅销书,长期位居亚马逊AI和机器学习类图书榜首。《人工智能》智能革命时代先行者李开复解读AI如何重塑个人、商业与社会的未来图谱。《人工智能简史》全方位解读人工智能的起源、神经网络、遗传算法、深度学习、自然语言处理等知识,深度点评AI历史趋势。
由人民邮电出版社出版的《人工智能通识》面向我国人工智能的通识教育与专业技术人才的培养。全书共8章,分为3篇,分别为人工智能的基本理论、人工智能的应用以及人工智能的融合拓展,涵盖了目前主流的人工智能技术。
这本书被广泛认为是人工智能领域的经典教材,适合初学者和有一定基础的学生。它全面介绍了人工智能的基本概念、算法和技术,包括搜索算法、知识表示、推理、机器学习、自然语言处理等。
机械视觉是计算机科学和机械工程交叉的领域,它涉及使用摄像机、数字信号处理器和计算机算法对图像进行分析,从而指导机器执行任务。这个领域结合了图像处理、模式识别、机器学习和人工智能等多个学科的知识。
《learning opencv》,有中文版。用这个入门最快。《机器学习实战》,简单,容易,清晰。《统计学习方法》,如果想学点理论,将整本书推导一下。入门这三本就够了。其他的书都太累太难。PRML和CV广大无比,深不可测,且常常很无用。
机器学习 首先推荐的一本书的周志华的《机器学习》,网称西瓜书,这是机器学习领域的经典入门教材之一,是一本大而全的书!内容中有用到西瓜举例子。如果你之前真的没有接触过任何关于机器学习的知识,那么这本书大概可以作为你第一本入门书。
模式识别(第3版) 张学工著 图像处理与计算机视觉的书籍推荐 图像处理,分析与机器视觉 第三版Sonka等著 艾海舟等译 Image Processing, Analysis and Machine Vision 这本书是图像处理与计算机视觉里面比较全的一本书了,几乎涵盖了图像视觉领域的各个方面。中文版的个人感觉也还可以,值得一看。
1、《人工智能通识》在介绍人工智能的基本原理时,尽量回避了相关的复杂模型和算法设计,方便读者在社会层面理解人工智能的应用形式和未来的发展路径。此外,书中每章都设计了一些思考与练习的题目,以便读者在课堂练习和研讨中使用。
2、《人工智能哲学》:人工智能哲学是伴随现代信息理论和计算机技术发展起来的一个哲学分支。本书收集了人工智能研究领域著名学者的十五篇代表性论文,这些论文为计算机科学的发展和人工智能哲学的建立作出了开创性的贡献。这些文章总结了人工智能发展的历程,该学科发展的趋势,以及人工智能中的重要课题。
3、如果您正在寻找对《人工智能教程》进行深入学习和实践的辅助资料,那么《人工智能教程学习指导与习题解析》是一本极好的选择。它作为十一五国家级规划教材《人工智能教程》的配套参考书,详细梳理了教材的核心内容,旨在帮助读者巩固和理解各章节的关键知识点。
4、《Python编程:入门到实践》书中内容分为基础篇和实战篇两部分。基础篇介绍基本的编程概念,实战篇介绍如何利用新学到的知识开发功能丰富的项目:2D游戏《外星人入侵》,数据可视化实战,Web应用程序。
5、《Machine Learning》综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。《机器学习》可作为计算机专业 本科生、研究生教材,也可作为相关领域研究人员、教师的参考书。
6、《皇帝新脑》、《人工智能的未来》如果是想做学术性的研究,最好还是自己多观察和思考,拥有自己独立的框架,别人的理论和知识永远只是为自己的框架添血加肉。但也有可能你会发现,很多书里的框架会和自己的框架类似和不谋而合,那是做学术很大的快感。