Copyright © 2023-2024 Corporation. All rights reserved. 深圳乐鱼体育有限公司 版权所有
第一阶段:掌握数据挖掘的基本概念和方法。先对数据挖掘有一个概念的认识,并掌握基本的算法,如分类算法、聚类算法、协同过滤算法等。参考书:《数据挖掘概念和技术》(第三版)范明,孟小峰 译著。第二阶段:掌握大数据时代下的数据挖掘和分布式处理算法。
经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking in C++》、《数据结构》等。
学习大规模并行计算的技术,例如MapReduce、MPI,GPU Computing。基本每个大公司都会用到这些技术,因为现实的数据量非常大,基本都是在计算集群上实现的。 参加实际的数据挖掘的竞赛,例如KDDCUP,或 https:// 上面的竞赛。
直接数据挖掘目标是预言,估值,分类,预定义目标变量的特征行为 神经元网络;决策树 间接数据挖掘:没有目标变量被预言,目的是发现整个数据集的结构 聚集检测 自动聚集检测 方法 K-均值是讲整个数据集分为K个聚集的算法。